Non-trivial d-wise Intersecting Families

Jason O'Neill
Joint work with Jacques Verstraete

UC San Diego

November 9, 2019

Talk Overview

In this talk, we will discuss the following topics:

Talk Overview

In this talk, we will discuss the following topics:

1 Erdős-Ko-Rado and Hilton-Milner

Talk Overview

In this talk, we will discuss the following topics:

1 Erdős-Ko-Rado and Hilton-Milner
2 Constructions of Non-trivial d-wise Intersecting families

Talk Overview

In this talk, we will discuss the following topics:

1 Erdős-Ko-Rado and Hilton-Milner
2 Constructions of Non-trivial d-wise Intersecting families
3 Sketch of Proof

Talk Overview

In this talk, we will discuss the following topics:

1 Erdős-Ko-Rado and Hilton-Milner
2 Constructions of Non-trivial d-wise Intersecting families
3 Sketch of Proof
4 Open Problems and Conjectures

Preliminaries

$$
\text { Let }[n]:=\{1,2, \ldots, n\} \text { and }\binom{[n]}{k}:=\{A \subset[n]:|A|=k\} \text {. }
$$

Preliminaries

$$
\text { Let }[n]:=\{1,2, \ldots, n\} \text { and }\binom{[n]}{k}:=\{A \subset[n]:|A|=k\} .
$$

For $a<b \in \mathbb{N}$, we will also use $[a, b]:=\{a, a+1, \ldots, b\}$.

Preliminaries

Let $[n]:=\{1,2, \ldots, n\}$ and $\binom{[n]}{k}:=\{A \subset[n]:|A|=k\}$.
For $a<b \in \mathbb{N}$, we will also use $[a, b]:=\{a, a+1, \ldots, b\}$.

Definition

A family $\mathcal{F} \subset\binom{[n]}{k}$ is said to be d-wise intersecting if for all $A_{1}, \ldots, A_{d} \in \mathcal{F}$, we have that

$$
\bigcap_{i=1}^{d} A_{i} \neq \emptyset
$$

Preliminaries

Let $[n]:=\{1,2, \ldots, n\}$ and $\binom{[n]}{k}:=\{A \subset[n]:|A|=k\}$.
For $a<b \in \mathbb{N}$, we will also use $[a, b]:=\{a, a+1, \ldots, b\}$.

Definition

A family $\mathcal{F} \subset\binom{[n]}{k}$ is said to be d-wise intersecting if for all $A_{1}, \ldots, A_{d} \in \mathcal{F}$, we have that

$$
\bigcap_{i=1}^{d} A_{i} \neq \emptyset
$$

In the case where $d=2$, we say that \mathcal{F} is intersecting.

The Erdős-Ko-Rado Theorem

Question

If $n \geq 2 k$, what is the largest intersecting k-uniform family?

The Erdős-Ko-Rado Theorem

Question

If $n \geq 2 k$, what is the largest intersecting k-uniform family?
The star $\mathcal{A}=\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$ is an intersecting family so that $|\mathcal{A}|=\binom{n-1}{k-1}$.

The Erdős-Ko-Rado Theorem

Question

If $n \geq 2 k$, what is the largest intersecting k-uniform family?
The $\operatorname{star} \mathcal{A}=\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$ is an intersecting family so that $|\mathcal{A}|=\binom{n-1}{k-1}$.

Theorem (Erdős-Ko-Rado, 1961)
Let $n \geq 2 k$ and $\mathcal{F} \subset\binom{[n]}{k}$ be an intersecting family. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

The Erdős-Ko-Rado Theorem

Question

If $n \geq 2 k$, what is the largest intersecting k-uniform family?
The $\operatorname{star} \mathcal{A}=\left\{A \in\binom{[n]}{k}: 1 \in A\right\}$ is an intersecting family so that $|\mathcal{A}|=\binom{n-1}{k-1}$.

Theorem (Erdős-Ko-Rado, 1961)

Let $n \geq 2 k$ and $\mathcal{F} \subset\binom{[n]}{k}$ be an intersecting family. Then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Moreover, if $n>2 k$ and $|\mathcal{F}|=\binom{n-1}{k-1}$, then $\mathcal{F} \cong \mathcal{A}$.

Non-trivial Intersection families

Definition

A family $\mathcal{F} \subset\binom{[n]}{k}$ is called non-trivial if

$$
\bigcap_{F \in \mathcal{F}} F=\emptyset
$$

Non-trivial Intersection families

Definition

A family $\mathcal{F} \subset\binom{[n]}{k}$ is called non-trivial if

$$
\bigcap_{F \in \mathcal{F}} F=\emptyset
$$

Question (Erdős-Ko-Rado, 1961)
If $n \geq 2 k$, what is the largest non-trivial intersecting family $\mathcal{F} \subset\binom{[n]}{k}$?

The Hilton-Milner theorem ($\mathrm{d}=2$)

Theorem (Hilton-Milner, 1967)

Let $n>2 k$ and $k \geq 3$. If $\mathcal{F} \subset\binom{[n]}{k}$ is a non-trivial intersecting family, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$.

The Hilton-Milner theorem ($\mathrm{d}=2$)

Theorem (Hilton-Milner, 1967)

Let $n>2 k$ and $k \geq 3$. If $\mathcal{F} \subset\binom{[n]}{k}$ is a non-trivial intersecting family, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$.

We can achieve the upper bound in the above Theorem with

$$
\mathcal{H} \mathcal{M}(k, 2)=\{[2, k+1]\} \cup\left\{A \in\binom{n}{k}: 1 \in A, A \cap[2, k+1] \neq \emptyset\right\}
$$

The case when $d>k$

Proposition

Let $d>k$. Then there does not exist a d-wise intersecting non-trivial $\mathcal{F} \subset\binom{[n]}{k}$.

The case when $d>k$

Proposition

Let $d>k$. Then there does not exist a d-wise intersecting non-trivial $\mathcal{F} \subset\binom{[n]}{k}$.

Proof.

Fix $A \in \mathcal{F}$.

The case when $d>k$

Proposition

Let $d>k$. Then there does not exist a d-wise intersecting non-trivial $\mathcal{F} \subset\binom{[n]}{k}$.

Proof.

Fix $A \in \mathcal{F}$. Then for each $a \in A$, there exists $X_{a} \in \mathcal{F}$ so that a $\notin X_{a}$ by the definition of non-trivial.

The case when $d>k$

Proposition

Let $d>k$. Then there does not exist a d-wise intersecting non-trivial $\mathcal{F} \subset\binom{[n]}{k}$.

Proof.

Fix $A \in \mathcal{F}$. Then for each $a \in A$, there exists $X_{a} \in \mathcal{F}$ so that a $\notin X_{a}$ by the definition of non-trivial. This is a contradiction as

$$
A \cap \bigcap_{a \in A} X_{a}=\emptyset .
$$

The case when $d \leq k$

Proposition

When $d=k$, the only non-trivial d-wise intersecting k-uniform family is $K_{k+1}^{(k)}$.

The case when $d \leq k$

Proposition

When $d=k$, the only non-trivial d-wise intersecting k-uniform family is $K_{k+1}^{(k)}$.

Question (Hilton-Milner)

For $2<d<k$, what is the the largest non-trivial d-wise intersecting k-uniform family?

The First Construction

Observe that any d edges of $K_{d+1}^{(d)}$ intersect.

The First Construction

Observe that any d edges of $K_{d+1}^{(d)}$ intersect.

Construction

Let $d \leq k$, then the following is a d-wise intersecting family:

$$
\mathcal{A}(k, d)=\left\{A \in\binom{[n]}{k}:|A \cap[d+1]| \geq d\right\} .
$$

The First Construction

Observe that any d edges of $K_{d+1}^{(d)}$ intersect.

Construction

Let $d \leq k$, then the following is a d-wise intersecting family:

$$
\mathcal{A}(k, d)=\left\{A \in\binom{[n]}{k}:|A \cap[d+1]| \geq d\right\} .
$$

Note that $|\mathcal{A}(k, d)|=(d+1)\binom{n-d-1}{k-d}+\binom{n-d-1}{k-d-1} \sim(d+1)\binom{n}{k-d}$.

The Second Construction

Construction

Let $d \leq k$, then the following is a d-wise intersecting family:

$$
\begin{aligned}
\mathcal{H} \mathcal{M}(k, d)= & \{[k+1] \backslash\{i\}: i \in[d-1]\} \\
& \cup\left\{A \in\binom{[n]}{k}:[d-1] \subset A, A \cap[d, k+1] \neq \emptyset\right\}
\end{aligned}
$$

The Second Construction

Construction

Let $d \leq k$, then the following is a d-wise intersecting family:

$$
\begin{aligned}
\mathcal{H} \mathcal{M}(k, d)= & \{[k+1] \backslash\{i\}: i \in[d-1]\} \\
& \cup\left\{A \in\binom{[n]}{k}:[d-1] \subset A, A \cap[d, k+1] \neq \emptyset\right\}
\end{aligned}
$$

Note that

$$
|\mathcal{H} \mathcal{M}(k, d)|=\binom{n-d+1}{k-d+1}-\binom{n-k-1}{k-d+1}+d-1 \sim(k-d+2)\binom{n}{k-d} .
$$

Our Main Theorem

Conjecture (Hilton-Milner, 1967)

For n sufficiently large, if $\mathcal{F} \subset\binom{[n]}{k}$ is a nontrivial d-wise intersecting family, then $|\mathcal{F}| \leq \max \{|\mathcal{A}(k, d)|,|\mathcal{H} \mathcal{M}(k, d)|\}$.

Our Main Theorem

Conjecture (Hilton-Milner, 1967)

For n sufficiently large, if $\mathcal{F} \subset\binom{[n]}{k}$ is a nontrivial d-wise intersecting family, then $|\mathcal{F}| \leq \max \{|\mathcal{A}(k, d)|,|\mathcal{H} \mathcal{M}(k, d)|\}$.

Theorem (O-Verstraete, 2019+)

Let k, d be integers with $2 \leq d<k$. For $n \geq n_{0}(k, d)$, if $\mathcal{F} \subset\binom{[n]}{k}$ is a nontrivial d-wise intersecting family, then

$$
|\mathcal{F}| \leq \max \{|\mathcal{A}(k, d)|,|\mathcal{H} \mathcal{M}(k, d)|\}
$$

Our Main Theorem

Conjecture (Hilton-Milner, 1967)

For n sufficiently large, if $\mathcal{F} \subset\binom{[n]}{k}$ is a nontrivial d-wise intersecting family, then $|\mathcal{F}| \leq \max \{|\mathcal{A}(k, d)|,|\mathcal{H} \mathcal{M}(k, d)|\}$.

Theorem (O-Verstraete, 2019+)

Let k, d be integers with $2 \leq d<k$. For $n \geq n_{0}(k, d)$, if $\mathcal{F} \subset\binom{[n]}{k}$ is a nontrivial d-wise intersecting family, then

$$
|\mathcal{F}| \leq \max \{|\mathcal{A}(k, d)|,|\mathcal{H} \mathcal{M}(k, d)|\}
$$

where we may take $n_{0}(k, d)=d+e\left(k^{2} 2^{k}\right)^{2^{k}}(k-d)$.

A Stability Version of Our Main Theorem

Theorem (O-Verstraete, 2019+)

Let k, d be integers with $2 \leq d<k$. Then for $n_{0}(k, d)=d+e\left(k^{2} 2^{k}\right)^{2^{k}}(k-d)$ and $n>n_{0}(k, d)$ we have that:

A Stability Version of Our Main Theorem

Theorem (O-Verstraete, 2019+)

Let k, d be integers with $2 \leq d<k$. Then for $n_{0}(k, d)=d+e\left(k^{2} 2^{k}\right)^{2^{k}}(k-d)$ and $n>n_{0}(k, d)$ we have that:

If $2 d+1 \geq k$ and \mathcal{F} is a non-trivial d-wise intersecting family with $|\mathcal{F}|>|\mathcal{H M}(k, d)|$, then $\mathcal{F} \subseteq \mathcal{A}(k, d)$.

The Delta System Method

Definition

A Delta system is a hypergraph Δ such that for all distinct $e, f \in \Delta$, we have that $e \cap f=\cap_{g \in \Delta} g$.

The Delta System Method

Definition

A Delta system is a hypergraph Δ such that for all distinct $e, f \in \Delta$, we have that $e \cap f=\cap_{g \in \Delta} g$. We let $\Delta_{k, s}$ be a k-uniform Delta system with s edges and define the Core of the Delta system to be core $(\Delta):=\cap_{g \in \Delta} g$.

The Delta System Method

Definition

A Delta system is a hypergraph Δ such that for all distinct $e, f \in \Delta$, we have that $e \cap f=\cap_{g \in \Delta} g$. We let $\Delta_{k, s}$ be a
k-uniform Delta system with s edges and define the Core of the Delta system to be core $(\Delta):=\cap_{g \in \Delta} g$.

Definition

Let $\mathcal{F} \subset\binom{[n]}{k}$ and $X \subset[n]$, then the core degree of X in \mathcal{F} is

$$
d_{\mathcal{F}}^{\star}(X):=\max \left\{s: \exists \Delta_{k, s} \text { so that } \operatorname{core}\left(\Delta_{k, s}\right)=X\right\} .
$$

The Structure of d-sets with large core degree

Definition

Given a family \mathcal{F}, we say $D \in\binom{[n]}{d}$ has large core degree if $d_{\mathcal{F}}^{\star}(D) \geq k$. Let $\mathcal{S}_{d}(\mathcal{F})$ be the collection of such d-sets in \mathcal{F}.

The Structure of d-sets with large core degree

Definition

Given a family \mathcal{F}, we say $D \in\binom{[n]}{d}$ has large core degree if $d_{\mathcal{F}}^{\star}(D) \geq k$. Let $\mathcal{S}_{d}(\mathcal{F})$ be the collection of such d-sets in \mathcal{F}.

Example

For $n \geq k(k-d)+d$ we have:

$$
\begin{aligned}
\mathcal{S}_{d}(\mathcal{H} \mathcal{M}(k, d)) & =\left\{A \in\binom{[k+1]}{d}:[d-1] \subset A\right\} \\
\mathcal{S}_{d}(\mathcal{A}(k, d)) & =K_{d+1}^{(d)}
\end{aligned}
$$

Sketch of Proof

Let $\mathcal{F} \subset\binom{[n]}{k}$ be a non-trivial d-wise intersecting family.

Sketch of Proof

Let $\mathcal{F} \subset\binom{[n]}{k}$ be a non-trivial d-wise intersecting family.

Lemma

$\mathcal{S}_{d}(\mathcal{F})$ is a $(d-1)$-intersecting family.

Sketch of Proof

Let $\mathcal{F} \subset\binom{[n]}{k}$ be a non-trivial d-wise intersecting family.

Lemma

$\mathcal{S}_{d}(\mathcal{F})$ is a $(d-1)$-intersecting family.

Lemma

If $\mathcal{S} \subset\binom{[k+1]}{d}$ is $(d-1)$-intersecting, then \mathcal{S} is isomorphic to a subfamily of $\mathcal{S}_{d}(\mathcal{A}(k, d))$ or $\mathcal{S}_{d}(\mathcal{H M}(k, d))$.

Sketch of Proof cont.

Lemma
 If $\left|\mathcal{S}_{d}(\mathcal{F})\right| \geq 3$ and $\mathcal{S}_{d}(\mathcal{F}) \subset \mathcal{S}_{d}(\mathcal{A}(k, d))$, then $\mathcal{F} \subset \mathcal{A}(k, d)$.

Sketch of Proof cont.

Lemma
 If $\left|\mathcal{S}_{d}(\mathcal{F})\right| \geq 3$ and $\mathcal{S}_{d}(\mathcal{F}) \subset \mathcal{S}_{d}(\mathcal{A}(k, d))$, then $\mathcal{F} \subset \mathcal{A}(k, d)$.

Lemma
 If $\left|\mathcal{S}_{d}(\mathcal{F})\right| \geq k-d+1$ and $\mathcal{S}_{d}(\mathcal{F}) \subset \mathcal{S}_{d}(\mathcal{H} \mathcal{M}(k, d))$, then $\mathcal{F} \subset \mathcal{H} \mathcal{M}(k, d)$.

Sketch of Proof cont.

Lemma
 If $\left|\mathcal{S}_{d}(\mathcal{F})\right| \geq 3$ and $\mathcal{S}_{d}(\mathcal{F}) \subset \mathcal{S}_{d}(\mathcal{A}(k, d))$, then $\mathcal{F} \subset \mathcal{A}(k, d)$.

Lemma

If $\left|\mathcal{S}_{d}(\mathcal{F})\right| \geq k-d+1$ and $\mathcal{S}_{d}(\mathcal{F}) \subset \mathcal{S}_{d}(\mathcal{H} \mathcal{M}(k, d))$, then $\mathcal{F} \subset \mathcal{H} \mathcal{M}(k, d)$.

We iteratively apply Füredi's Intersection Semilattice lemma to get enough d-sets with large core degree.

Open Problems

Conjecture (O-Verstraete)

For $k>d \geq 2$ and $n \geq k d /(d-1)$, the unique extremal non-trivial d-wise intersecting families of k-element subsets of [n] are $\mathcal{H M}(k, d)$ and $\mathcal{A}(k, d)$.

Open Problems

Conjecture (O-Verstraete)

For $k>d \geq 2$ and $n \geq k d /(d-1)$, the unique extremal non-trivial d-wise intersecting families of k-element subsets of $[n]$ are $\mathcal{H} \mathcal{M}(k, d)$ and $\mathcal{A}(k, d)$.

Using d-sets which have large core degree only works $n \geq k(k-d)+d$, so a new technique will be needed.

Open Problems

Conjecture (O-Verstraete)

For $k>d \geq 2$ and $n \geq k d /(d-1)$, the unique extremal non-trivial d-wise intersecting families of k-element subsets of $[n]$ are $\mathcal{H} \mathcal{M}(k, d)$ and $\mathcal{A}(k, d)$.

Using d-sets which have large core degree only works $n \geq k(k-d)+d$, so a new technique will be needed.

Question (O-Verstraete)

Does there exist a degree version of our theorem for $n \geq n_{1}(k, d)$?

Thanks

Thank you for listening!

